R/tt_test.R
tt_test.Rd
Determine habitat-species associations with code developed by Sabrina Russo, Daniel Zuleta, Matteo Detto, and Kyle Harms.
tt_test(tree, habitat, sp = NULL, plotdim = NULL, gridsize = NULL)
tree | A dataframe; a ForestGEO tree table (see details). |
---|---|
habitat | Object giving the habitat designation for each
plot partition defined by |
sp | Character sting giving any number of species-names. |
plotdim, gridsize | Plot dimensions and gridsize. If |
A list of matrices.
This test only makes sense at the population level. We are interested in knowing whether or not individuals of a species are aggregated on a habitat. Multiple stems of an individual do not represent population level processes but individual level processes. Thus, you should use data of individual trees -- i.e. use a tree table, and not a stem table with potentially multiple stems per tree.
You should only try to determine the habitat association for sufficiently abundant species. In a 50-ha plot, a minimum abundance of 50 trees/species has been used.
Nestor Engone Obiang, David Kenfack, Jennifer Baltzer, and Rutuja Chitra-Tarak provided feedback. Daniel Zuleta provided guidance.
N.Hab.1
: Count of stems of the focal species in habitat 1.
Gr.Hab.1
: Count of instances the observed relative density of the focal
species on habitat 1 was greater than the relative density based on the TT
habitat map.
Ls.Hab.1
: Count of instances the observed relative density of the focal
species on habitat 1 was less than the relative density based on the TT
habitat map.
Eq.Hab.1
: Count of instances the observed relative density of the focal
species on habitat 1 was equal to the relative density based on the TT
habitat map.
The sum of the Gr.Hab.x
, Ls.Hab.x
, and Eq.Hab.x
columns for one habitat
equals the number of 20 x20 quads in the plot.
The Rep.Agg.Neut
columns for each habitat indicate whether the species is
significantly repelled (-1), aggregated (1), or neutrally distributed (0) on
the habitat in question.
The probabilities associated with the test for whether these patterns are
statistically significant are in the Obs.Quantile
columns for each habitat.
Note that to calculate the probability for repelled, it is the value
given, but to calculate the probability for aggregated, it is one minus
the value given.
Values of the Obs.Quantile < 0.025
means that the species is repelled from
that habitat, while values of the Obs.Quantile > 0.975
means that the
species is aggregated on that habitat.
Zuleta, D., Russo, S.E., Barona, A. et al. Plant Soil (2018). https://doi.org/10.1007/s11104-018-3878-0.
summary.tt_lst()
, summary.tt_df()
, as_tibble()
,
fgeo_habitat()
.
Other habitat functions:
fgeo_habitat()
,
fgeo_topography()
Sabrina Russo, Daniel Zuleta, Matteo Detto, and Kyle Harms.
library(fgeo.tool) assert_is_installed("fgeo.x") # Example data tree <- fgeo.x::tree6_3species elevation <- fgeo.x::elevation # Pick alive trees, of 10 mm or more census <- filter(tree, status == "A", dbh >= 10) # Pick sufficiently abundant species pick <- filter(dplyr::add_count(census, sp), n > 50) # Use your habitat data or create it from elevation data habitat <- fgeo_habitat(elevation, gridsize = 20, n = 4) # Defaults to using all species as_tibble( tt_test(census, habitat) )#>#>#> # A tibble: 12 x 8 #> habitat sp N.Hab Gr.Hab Ls.Hab Eq.Hab Rep.Agg.Neut Obs.Quantile #> * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 CASARB 29 1242 356 2 0 0.776 #> 2 2 CASARB 20 390 1206 4 0 0.244 #> 3 3 CASARB 12 778 817 5 0 0.486 #> 4 4 CASARB 5 932 658 10 0 0.582 #> 5 1 PREMON 91 1093 504 3 0 0.683 #> 6 2 PREMON 89 1254 344 2 0 0.784 #> 7 3 PREMON 40 305 1292 3 0 0.191 #> 8 4 PREMON 14 270 1322 8 0 0.169 #> 9 1 SLOBER 18 273 1324 3 0 0.171 #> 10 2 SLOBER 24 810 788 2 0 0.506 #> 11 3 SLOBER 17 1155 440 5 0 0.722 #> 12 4 SLOBER 7 1292 303 5 0 0.808#>#>#> N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1 N.Hab.2 #> CASARB 29 1242 356 2 0 0.776250 20 #> PREMON 91 1093 504 3 0 0.683125 89 #> SLOBER 18 273 1324 3 0 0.170625 24 #> Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2 N.Hab.3 #> CASARB 390 1206 4 0 0.24375 12 #> PREMON 1254 344 2 0 0.78375 40 #> SLOBER 810 788 2 0 0.50625 17 #> Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3 N.Hab.4 #> CASARB 778 817 5 0 0.486250 5 #> PREMON 305 1292 3 0 0.190625 14 #> SLOBER 1155 440 5 0 0.721875 7 #> Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4 #> CASARB 932 658 10 0 0.58250 #> PREMON 270 1322 8 0 0.16875 #> SLOBER 1292 303 5 0 0.80750#>#>#> # A tibble: 8 x 3 #> sp habitat association #> <chr> <chr> <chr> #> 1 CASARB 1 neutral #> 2 CASARB 2 neutral #> 3 CASARB 3 neutral #> 4 CASARB 4 neutral #> 5 PREMON 1 neutral #> 6 PREMON 2 neutral #> 7 PREMON 3 neutral #> 8 PREMON 4 neutral