This function wraps a number of functions from the BIOMASS package, which you may see for more options and details. It uses pantropical models from Chave et al. 2014 to estimate the above-ground biomass of tropical trees.

add_tropical_biomass(data, species, region = "Pantropical",
  latitude = NULL, longitude = NULL,
  dbh_unit = guess_dbh_unit(data$dbh))

Arguments

data

A ForestGEO-like census-dataframe.

species

A ForestGEO-like species-dataframe.

region

Area of your dataset to estimate tree height thanks to Weibull-H region-, continent-specific and pantropical models proposed by Feldpausch et al. (2012). To be chosen between:

  • Africa: Africa

  • CAfrica: Central Africa

  • EAfrica: Eastern Africa

  • WAfrica: Western Africa

  • SAmerica: Southern America

  • BrazilianShield: Brazilian Shield

  • ECAmazonia: East-Central Amazonia

  • GuianaShield: Guiana Shield

  • WAmazonia: Western Amazonia

  • SEAsia: South-Eastern Asia

  • NAustralia: Northern Australia

  • Pantropical: Pantropical

latitude, longitude

A number giving coordinates, e.g. latitude = 9.004080, longitude = -79.525635. It can also be a vector of such numbers, with as many elements as the number of rows of data.

dbh_unit

Character string giving the unit of dbh values, e.g. "mm" (see valid_units()).

Value

A modified version of the data dataframe, with additional columns giving taxonomic, wood density (in g/cm^3), and biomass (in kg) information.

References

Chave et al. (2014) Improved allometric models to estimate the aboveground biomass of tropical trees, Global Change Biology, 20 (10), 3177-3190

See also

Examples

library(dplyr) library(fgeo.biomass) data <- fgeo.biomass::scbi_stem_tiny_tree species <- fgeo.biomass::scbi_species add_tropical_biomass(data, species, region = "pantropical")
#> ✔ Guessing dbh in [mm]. #> ℹ You may provide the dbh unit manually via the argument`dbh_unit`. #> ℹ Wood density given in [g/cm^3]. #> ✔ Using 'pantropical' `region`. #> ℹ Biomass is given in [kg]. #> ✔ Adding new columns: #> family, genus, species, wd_level, wd_mean, wd_sd, biomass
#> # A tibble: 11 x 27 #> treeID stemID tag StemTag sp quadrat gx gy DBHID CensusID dbh #> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 3175 3175 22146 1 caca 0221 29 404. 6103 1 10.7 #> 2 3175 32574 22146 2 caca 0221 29 404. 6104 1 3.14 #> 3 3996 3996 30363 1 litu 0307 50.3 139. 7096 1 75.5 #> 4 3996 32682 30363 2 litu 0307 50.3 139. 7097 1 12.7 #> 5 5570 5570 42082 1 caca 0419 71.3 363. 9047 1 9.83 #> 6 5570 32894 42082 2 caca 0419 71.3 363. 9048 1 4.93 #> 7 5570 37222 42082 3 caca 0419 71.3 363. 9049 1 4.43 #> 8 10060 10060 82218 1 litu 0822 159. 436 14579 1 61.4 #> 9 10060 33449 82218 2 litu 0822 159. 436 14580 1 22.2 #> 10 26760 26760 180969 1 ulru 1812 350. 227. 34958 1 34.3 #> 11 26760 35964 180969 2 ulru 1812 350. 227. 34959 1 5.03 #> # … with 16 more variables: pom <dbl>, hom <dbl>, ExactDate <date>, #> # DFstatus <chr>, codes <chr>, countPOM <dbl>, date <dbl>, status <chr>, #> # agb <dbl>, family <chr>, genus <chr>, species <chr>, wd_level <chr>, #> # wd_mean <dbl>, wd_sd <dbl>, biomass <dbl>
# Not running to reduce build check-time
# NOT RUN { data %>% add_tropical_biomass(species, latitude = -34, longitude = -58) %>% select(biomass, everything()) # }