R/pick_recensus.R
pick_recensus.Rd
Based on a reference dataset x
, this function helps you
identify stems that remain to be recensused in a dataset y
. This
function does the same work as dplyr::anti_join()
. The only difference is
that the signature of pick_recensus()
is a little simpler (irrelevant
arguments hidden via ...
) to focus your attention on the arguments that are
most useful in helping you identify stems to recensus. This function also
exists to help you discover the *join()
functions of dplyr, which will
help you solve more general problems.
pick_recensus(x, y, by = NULL, ...)
x, y | Dataframes to join:
|
---|---|
by | a character vector of variables to join by. If To join by different variables on x and y use a named vector.
For example, |
... | Other parameters passed onto dplyr::anti_join. |
Returns all rows from x
where there are not matching values in
y
, keeping just columns from x
.
This function preserves dplyr's style and thus non-standard evaluation. If you want to use it inside your own functions, you should learn about tidy eval (implemented via the rlang package). A good place to start is at dplyr's website.
x <- tibble::tribble( ~unique_stem, ~quadrat, "01_1", "001", "02_1", "001", "02_2", "001", "04_1", "002", "04_2", "002", "05_1", "002" ) y <- tibble::tribble( ~unique_stem, "01_1", "02_2", "04_2" ) pick_recensus(x, y)#>#> # A tibble: 3 x 2 #> unique_stem quadrat #> <chr> <chr> #> 1 02_1 001 #> 2 04_1 002 #> 3 05_1 002# Same pick_recensus(x, y, by = "unique_stem")#> # A tibble: 3 x 2 #> unique_stem quadrat #> <chr> <chr> #> 1 02_1 001 #> 2 04_1 002 #> 3 05_1 002y2 <- dplyr::tribble( ~unq_stem, "01_1", "02_2", "04_2" ) pick_recensus(x, y2, by = c("unique_stem" = "unq_stem"))#> # A tibble: 3 x 2 #> unique_stem quadrat #> <chr> <chr> #> 1 02_1 001 #> 2 04_1 002 #> 3 05_1 002# For this and more general problems you can use `dplyr::*_join()` functions dplyr::anti_join(x, y2, by = c("unique_stem" = "unq_stem"))#> # A tibble: 3 x 2 #> unique_stem quadrat #> <chr> <chr> #> 1 02_1 001 #> 2 04_1 002 #> 3 05_1 002